March 9, 2021

DURAZR®-S series [HSY-0480]

Product Information

Note

- · The contents of this document and the listed products herein are confidential.
- Disclosure of any confidential information to anyone other than the intended recipient is prohibited.
- Daiichi Kigenso Kagaku Kogyo Co., Ltd. holds the intellectual property rights on the contents of this document and the listed products herein.
- The powders we provide are for general industrial materials and are not intended for military applications, nuclear power, medical treatment, surgical implants, foods, cosmetics or their additives.
- The technical data contained in this document represents the current state of our product knowledge and is for information purposes only. It does not constitute a guarantee or specification. In addition, the contents are subject to change without notice due to changes in specifications and so on.
- Revision of the second edition: April 17, 2023

DURAZR®-S series HSY-0480

What is DURAZR®-S?

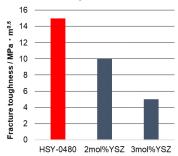
CONFIDENTIAL

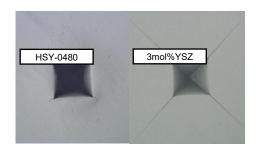
Using our ATEDZ technology, we have developed a zirconia powder that can achieve a ceramic material with high strength and toughness when sintered at low temperature.

Conventional zirconia grade Sintered at 1400∼1450°C

DURAZR®-S series Improved strength and toughness

Sintered at 1200~1300°C

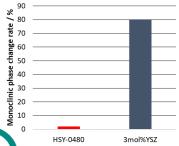

ATEDZ (<u>Advanced Toughness and Easy-sintering DKK Zirconia technology</u>)
Technology to improve sinterability by controlling the aggregation state of zirconia particles.


Characteristics of HSY-0480

High Strength and High Toughness

HSY-0480 is a zirconia powder that uses calcium as a stabilizer. It can produce high-strength, high-toughness sintered bodies that cannot be obtained at conventional sintering temperatures.

Fracture toughness of HSY-0480



Vickers indentation shape of sintered body

High Degradation Resistance

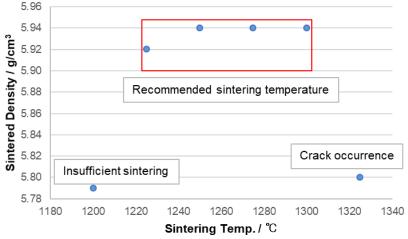
HSY-0480 has high hydrothermal degradation and thermal degradation resistance.

 Hydrothermal degradation resistance of HSY-0480 (134°C × 75hr)

Reduction of Raw Material Risk

HSY-0480 uses calcium as a stabilizer and reduces raw material risk through domestic procurement.

- ➤ Calcium is 1000 times more abundant in the earth's crust than yttrium (a typical stabilizing element) *1.
- Widely distributed throughout the world.
- Calcium is the only mineral resource that is abundant in Japan.
- ➤ More than 90% of yttrium oxide is imported from specific countries*2.
- \ast 1. The Chemical Society of Japan, Chemistry Handbook Basic Edition,(Maruzen,1966). \ast 2. "Trade Statistics of Japan, Table of Countries by Commodity, "Ministry of Finance.



Characteristic Data (1)

CONFIDENTIAL

Characteristics of Sintered Body

		HSY-0480					
Sintering Temp.	°C	1200	1225	1250	1275	1300	1325
Sintered Density	g/cm ³	5.79	5.92	5.94	5.94	5.94	Crack
3-point bending strength	MPa	900	1000	1000	900	800	Crack
Fracture toughness	MPa·m ^{0.5}	<10	10~15	≧15	≧15	≧15	Crack

Sintering behavior of HSY-0480

Degradation Resistance of HSY-0480

			HSY-0480	3mol%YSZ	
Sintering Temp.	-	°C	1250	1450	
Monoclinic phase	Hydrothermal treatment 134°C × 75hr	1 %	1	79	
change rate		1			

Characteristics

- It shows high mechanical properties in low-temperature sintering at 1225-1300°C.
- It shows high stability against hydrothermal degradation and thermal degradation.

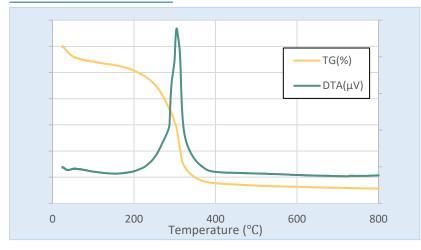
Characteristic data 2

Characteristics of Powder and Sintered Body

CONFIDENTIAL

	Item	Unit	Analysis Result		
	ZrO ₂ +HfO ₂	wt%	97.93		
	CaO	wt%	2.07		
	Al_2O_3	wt%	0.25		
	Fe ₂ O ₃	wt%	0.001		
Characteristics	TiO ₂	wt%	0.001		
of Powder	SiO ₂	wt%	0.006		
	Na ₂ O	wt%	0.011		
	H ₂ O	wt%	0.55		
	L.O.I (H ₂ O Containing)	wt%	5.49		
	Bulk Density	g/cm ³	1.07		
	Green Density	g/cm ³	2.98		
	180 <i>µ</i> m on	wt%	0		
	180-106 <i>μ</i> m	wt%	0.5		
	106-90μm	wt%	2.6		
Particle Size Distribution	90-75 <i>μ</i> m	wt%	6.4		
Distribution	75-63 <i>μ</i> m	wt%	15.4		
	63-45 <i>μ</i> m	wt%	35.5		
	45-38 <i>μ</i> m	wt%	16.3		
	38 <i>μ</i> m pass	wt%	23.3		
Characteristics of Sintered Body (Sintering temp.:1250℃)	Sintered Density	g/cm ³	5.94		
	3-point bending strength	MPa	1000		
	Vickers hardness	HV	1100		
	Fracture toughness (IF method:294N)	MPa⋅m ^{0.5}	≧15		

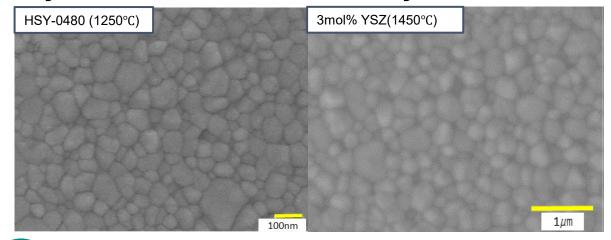
Molding / sintering method


Molding Method : After uniaxial press molding (9.8MPa), 196MPa, Cold Isostatic Pressing (CIP) molding.
 Sintered at 1250°C x 2hrs (Heating rate : 100 °C/hr)

Characteristic Data3

TG-DTA Data

CONFIDENTIAL



Weight loss Approx. 5 wt% (Binder content)

Granule Shape

Crystal Grains of Sintered Body

HSY-0481 Characteristic Data

CONFIDENTIAL

Characteristics of Powder and Sintered Body

 HSY-0481 (binder-free powder grade) is suitable for injection molding / extrusion / tape casting.

	Item	Unit	Analysis Result
Characteristics of Powder	ZrO ₂ +HfO ₂	wt%	97.95
	CaO	wt%	2.05
	Al_2O_3	wt%	0.25
	Fe ₂ O ₃	wt%	0.001
	TiO ₂	wt%	0.001
	SiO ₂	SiO ₂ wt%	
	Na ₂ O wt%		0.007
	H ₂ O	wt%	0.83
	L.O.I (H ₂ O Containing)	wt%	1.65
	Specific Surface Area	m²/g	23.3
	Bulk Density	g/cm ³	0.97
	Green Density	g/cm ³	2.85
Characteristics of Sintered Body (Sintering temp.:1250°C)	Sintered Density	g/cm ³	5.96
	3-point bending strength	MPa	1000
	Vickers hardness	HV	1100
	Fracture toughness (IF method:294N)	MPa⋅m ^{0.5}	≧15

- Molding Method: After uniaxial press molding (9.8MPa), 196MPa, Cold Isostatic Pressing (CIP) molding.
- Sintered at 1250°C x 2hrs (Heating rate : 100 °C/hr)

Please feel free to contact us if you need materials for parts to be used under severe conditions such as high pressure and temperature (water vapor), alkali resistance and acidity.

